BT-3/D-19

33080

DISCRETE STRUCTURE CSE-201N/IT-209N

Time: Three Hours]

[Maximum Marks: 75

Note: Attempt Five questions in all, selecting at least one question from each Unit.

Unit

1. (a) Let P, Q and Ware three finite sets. Then prove that:

$$|P \cup Q \cup R| = |P| + |Q| + |R| - |P \cap Q| - |P \cap R|$$
$$-|Q \cap R| + |P \cap Q \cap R|$$

Also draw Venn diagram.

8

- (b) Let A and B be two sets, then show that $(A \cup B)^c = A^c \cap B^c$. Also justify your answer by giving suitable example.
- 2. (a) Determine which propositions are the following by constructing Truth Tables:
 - (i) $(p \rightarrow (q \rightarrow r)) \rightarrow ((p \rightarrow q) \rightarrow (p \rightarrow r))$
 - (ii) $(p \leftrightarrow q) \rightarrow ((p \land q) \lor (\sim p \land q))$

P.T.O.

(b) Prove by Mathematical Induction for any integer n, $11^{n+2} + 12^{2n+1}$ is divisible by 133.

Unit II

- 3. (a) Let $A = \{a, b, c, d\}$. Let $R = \{(a, b), (a, c), (b, a), (b, c), (c, d), (d, a)\}$. Find the Reflexive-transitive closure of R.
 - (b) Find whether the relation $(x, y) \in \mathbb{R}$, if $x \ge y$ defined on the set of positive integers is a partial order relation or not.

Let $D_{100} = \{1, 2, 4, 5, 10, 20, 25, 50, 100\}$ and let the relation $R(\leq)$ be the relation (divides) a partial ordering on D_{100} .

- (a) Draw the Hasse Diagram for the above relation :
 - (i) Determine the GLB of B, where B = {10, 20}
 - (ii) Determine the LUB of B, where $B = \{10, 20\}$
 - (iii) Determine the GLB of B, where $B = \{5, 10, 20, 25\}$
 - (iv) Determine the LUB of B, where $B = \{5, 10, 20, 25\}$.

10

(b) Determine whether (D₁₀₀, R) is a lattice or not. 5

Unit III

- 5. (a) In a shipment, there are 40 floppy disks of which 5 are defective. Determine:
 - (i) In how many ways can we select 5 floppy disks?
 - (ii) In how many ways can we select 5 nondefective floppy disks?
 - (iii) In how many ways can we select 5 floppy disks containing exactly 3 defective floppy disks?
 - (b) How many permutations can be made out of the letters of word "COMPUTER" ? How many of these:
 - (i) Begin with C
 - (ii) End with R
 - (iii) Begin with C and end with R
 - (iv) C and R occupy the end places.
- 6. (a) Solve the recurrence relation $a_{r+2} 2a_{r+1} + a_r = 2^r$ by the method of generating functions with the initial conditions $a_0 = 2$ and $a_1 = 1$.
 - (b) Find the particular solution of the difference equation $a_{r+2} 4a_r = r^2 + r + 1$.

(3-26/2) L-33080

P.T.O.

Unit IV

- 7. (a) Consider an algebraic system (G, *), where 'G' is the set of all non-zero real numbers and '*' is a binary operation defined by a*b = ab/4. Show that (G, *) is an abelian group.
 - (b) Let (1, +) be a group, where I is the set of all integers and '+' is an addition operation. Determine whether the following subsets of G are subgroups of G:
 - (i) The set G₁ of all odd integers (percentage)
 - (ii) The set G₂ of all positive integers. ~
 - 8. (a) Consider an algebraic system (Q, *), where 'Q' is the set of all rational numbers and '*' is a binary operation defined by a * b = a + b ab for all a, b ∈ Q. Determine whether (Q, +) is a group or not.
 8
 - (b) Explain Ring Homomorphism with example.